Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 108(supl.1): 48-58, 2013. graf
Article in English | LILACS | ID: lil-697831

ABSTRACT

Organisms from bacteria to humans have evolved under predictable daily environmental cycles owing to the Earth’s rotation. This strong selection pressure has generated endogenous circadian clocks that regulate many aspects of behaviour, physiology and metabolism, anticipating and synchronising internal time-keeping to changes in the cyclical environment. In haematophagous insect vectors the circadian clock coordinates feeding activity, which is important for the dynamics of pathogen transmission. We have recently witnessed a substantial advance in molecular studies of circadian clocks in insect vector species that has consolidated behavioural data collected over many years, which provided insights into the regulation of the clock in the wild. Next generation sequencing technologies will facilitate the study of vector genomes/transcriptomes both among and within species and illuminate some of the species-specific patterns of adaptive circadian phenotypes that are observed in the field and in the laboratory. In this review we will explore these recent findings and attempt to identify potential areas for further investigation.


Subject(s)
Animals , Circadian Rhythm/genetics , Culicidae/genetics , Drosophila melanogaster/genetics , Insect Vectors/genetics , Period Circadian Proteins/genetics , Anopheles/physiology , Psychodidae/physiology
2.
Article in English | IMSEAR | ID: sea-114388

ABSTRACT

Antarctic krill (Euphausia superba) is a keystone species in the southern ocean ecosystem where it is the main consumer of phytoplankton and constitutes the main food item of many higher predators. Both food and predators are most abundant at the surface, thus krill hide in the depth of the ocean during the day and migrate to the upper layers at night, to feed at a time when the predatory risk is lowest. Although the functional significance of this diel vertical migration (DVM) is clear and its modulation by environmental factors has been described, the involvement of an endogenous circadian clock in this behaviour is as yet not fully resolved. We have analysed the circadian behaviour of Euphausia superba in a laboratory setting and here we present the first description of locomotor activity rhythms for this species. Our results are in agreement with the hypothesis that the circadian clock plays a key role in DVM. They also suggest that the interplay between food availability, social cues and the light:dark cycle acts as the predominant Zeitgeber for DVM in this species.


Subject(s)
Animal Migration/physiology , Animals , Circadian Rhythm/physiology , Ecosystem , Euphausiacea/physiology , Motor Activity/physiology , Periodicity , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL